Океаническая кора
Океани́ческая кора́ — тип земной коры, распространённый в океанах. От континентов кора океанов отличается меньшей мощностью (толщиной) и базальтовым составом. Она образуется в срединно-океанических хребтах и поглощается в зонах субдукции. Древние фрагменты океанической коры, сохранившиеся в складчатых сооружениях на континентах, называются офиолитами. В срединно-океанических хребтах происходит интенсивное гидротермальное изменение океанической коры, в репиздате которого из неё выносятся легкорастворимые элементы.
Ежегодно в срединно-океанических хребтах формируется 3,4 км² океанической коры объёмом 24 км³ и массой 7×10 10 тонн магматических пород. Средняя плотность океанической коры около 3,3 г/см³. Масса океанической коры оценивается в 5,9×10 18 тонн (0,1 % от общей массы Земли, или 21 % от общей массы коры). Таким образом, среднее время обновления океанической коры составляет менее 100 млн. лет; самая древняя океаническая кора, находящаяся в ложе океана, сохранилась во впадине Пиджафета в Тихом океане и имеет юрский возраст (156 млн лет).
Океаническая кора состоит преимущественно из базальтов и, поглощаясь в зонах субдукции, превращается в высокометаморфизованные породы — эклогиты. Эклогиты имеют плотность больше, чем самые распространенные мантийные породы — перидотиты, и погружаются в глубину. Они задерживаются на границе между верхней и нижней мантией, на глубине порядка 660 километров, а затем проникают и в нижнюю мантию. Согласно некоторым оценкам, эклогиты, прежде слагавшие океаническую кору ныне составляют около 7 % массы мантии.
Относительно небольшие фрагменты древней океанической коры могут исключаться из спрединго-субдукционного круговорота в закрытых бассейнах, замкнутых в результате коллизии континентов. Примером такого участка может быть северная часть впадины Каспийского моря, фундамент которой, по мнению некоторых исследователей, сложен океанической корой девонского возраста.
Океаническая кора может заползать поверх континентальной коры, в результате обдукции. Так формируются самые крупные офиолитовые комплексы типа офиолитового комплекса Семаил.
Строение океанической коры
Стандартная океаническая кора имеет мощность 7 км, и строго закономерное строение. Сверху вниз она сложена следующими комплексами:
- осадочные породы, представленные глубоководными океаническими осадками.
- базальтовые покровы, излившиеся под водой.
- дайковый комплекс, состоит из вложенных друг в друга базальтовых даек.
- слой основных расслоенных интрузий
- мантия, представлена дунитами и перидотитами.
В подошве океанической коры обычно залегают дуниты и перидотиты. Эти породы могут образоваться как в результате кристаллизации расплавов, так и быть первичными мантийными породами. Их можно различить по ориентировке зерен в породе. В породах прошедших магматическую стадию кристаллы ориентированы произвольно. В мантийных породах, претерпевших течение в конвективных ячейках, зерна ориентированы в соответствии со своими реологическими свойствами.
Слой расслоенных интрузий образуется в срединно-океаническом хребте, в магматических камерах, расположенных на глубине 2—4 км. Эти массивы вложены друг в друга.
Океаническая кора может иметь повышенную мощность в районах плюмового магматизма. В таких местах расположены океанические острова и океанические плато.
Источник
Океаническая кора: основные свойства, строение и глобальная геологическая роль
Отличительной чертой земной литосферы, связанной с феноменом глобальной тектоники нашей планеты, является наличие двух типов коры: материковой, слагающей континентальные массивы, и океанической. Они различаются составом, строением, мощностью и характером преобладающих тектонических процессов. Важная роль в функционировании единой динамичной системы, которую представляет собой Земля, принадлежит океанической коре. Для выяснения этой роли прежде всего необходимо обратиться к рассмотрению присущих ей особенностей.
Общая характеристика
Океанический тип коры образует крупнейшую геологическую структуру планеты – ложе океана. Эта кора имеет небольшую толщину – от 5 до 10 км (для сравнения, мощность коры континентального типа в среднем составляет 35–45 км и может достигать 70 км). Занимает она около 70% общей площади поверхности Земли, но по массе почти вчетверо уступает материковой коре. Средняя плотность пород близка к 2,9 г/см 3 , то есть выше, чем у материков (2,6–2,7 г/см 3 ).
В отличие от обособленных блоков материковой коры, океаническая представляет собой единую планетарную структуру, которая, однако, не является монолитной. Литосфера Земли расчленена на ряд подвижных плит, сформированных участками коры и подстилающей ее верхней мантии. Океанический тип коры присутствует на всех литосферных плитах; существуют плиты (например, Тихоокеанская или Наска), не имеющие континентальных массивов.
Тектоника плит и возраст коры
В океанической плите различают такие крупные структурные элементы, как стабильные платформы – талассократоны – и активные срединно-океанические хребты и глубоководные желоба. Хребты – это участки спрединга, или раздвигания плит и образования новой коры, а желоба – зоны субдукции, или поддвига одной плиты под край другой, где кора уничтожается. Таким образом, происходит непрерывное ее обновление, в результате чего возраст древнейшей коры данного типа не превышает 160–170 млн лет, то есть она сформировалась в юрском периоде.
С другой стороны, следует иметь в виду, что океанический тип появился на Земле раньше, чем континентальный (вероятно, на рубеже катархей — архей, около 4 млрд лет назад), и характеризуется гораздо более примитивным строением и составом.
Чем и как сложена земная кора под океанами
В настоящее время выделяют обычно три основных слоя океанической коры:
- Осадочный. Образован он в основном карбонатными породами, частично – глубоководными глинами. Вблизи склонов материков, особенно у дельт крупных рек, присутствуют и терригенные осадки, поступающие в океан с суши. В этих районах мощность осадков может составлять несколько километров, но в среднем она невелика – около 0,5 км. Вблизи срединно-океанических хребтов осадки практически отсутствуют.
- Базальтовый. Это излившиеся, как правило, под водой, лавы подушечного типа. Кроме того, к данному слою относят расположенный ниже сложный комплекс даек – особых интрузий – долеритового (то есть также базальтового) состава. Средняя толщина его 2–2,5 км.
- Габбро-серпентинитовый. Сложен интрузивным аналогом базальта – габбро, а в нижней части – серпентинитами (метаморфизованными ультраосновными породами). Мощность этого слоя, согласно сейсмическим данным, достигает 5 км, а иногда и более. Подошва его отделена от подстилающей кору верхней мантии особой поверхностью раздела – границей Мохоровичича.
Строение океанической коры свидетельствует о том, что, по сути, это образование можно в некотором смысле рассматривать как дифференцированный верхний слой земной мантии, состоящий из ее раскристаллизованных пород, который перекрыт сверху тонким слоем морских осадков.
«Конвейер» океанического дна
Понятно, почему в составе этой коры мало осадочных пород: они просто не успевают накопиться в значительных количествах. Разрастаясь от спрединговых зон в районах срединно-океанических хребтов благодаря поступлению горячего мантийного вещества в ходе конвекционного процесса, литосферные плиты как бы уносят океаническую кору все дальше от места формирования. Их увлекает горизонтальный участок все того же медленного, но мощного конвективного течения. В зоне субдукции плита (и кора в ее составе) погружается обратно в мантию уже как холодная часть этого потока. Значительная часть осадков при этом сдирается, сминается и в конечном счете идет на прирост коры материкового типа, то есть на сокращение площади океанов.
Океаническому типу коры присуще такое интересное свойство, как полосовые магнитные аномалии. Эти чередующиеся участки прямой и обратной намагниченности базальта параллельны зоне спрединга и располагаются симметрично по обе стороны от нее. Они возникают при кристаллизации базальтовой лавы, когда она приобретает остаточную намагниченность в соответствии с направлением геомагнитного поля в ту или иную эпоху. Поскольку оно многократно испытывало инверсии, направление намагниченности периодически менялось на противоположное. Данное явление используется при палеомагнитном геохронологическом датировании, а полвека назад оно послужило одним из самых веских аргументов в пользу правильности теории тектоники плит.
Океанический тип коры в круговороте вещества и в тепловом балансе Земли
Участвуя в процессах тектоники литосферных плит, океаническая кора является важным элементом долговременных геологических циклов. Таков, например, медленный мантийно-океанический круговорот воды. В мантии содержится очень много воды, и немалое количество ее поступает в океан при формировании базальтового слоя молодой коры. Но за время своего существования кора, в свою очередь, обогащается благодаря формированию осадочного слоя водой океанов, значительная доля которой, частично в связанном виде, уходит в мантию при субдукции. Аналогичные циклы действуют и для других веществ, например, для углерода.
Тектоника плит играет ключевую роль в энергетическом балансе Земли, обеспечивая медленный перенос тепла от горячих внутренних областей и теплоотдачу с поверхности. Притом известно, что за всю геологическую историю планета отдала до 90% тепла именно через тонкую кору под океанами. Если бы не работал этот механизм, Земля избавлялась бы от излишка тепла иным путем – возможно, подобно Венере, где, как предполагают многие ученые, происходило глобальное разрушение коры при прорыве на поверхность перегретого вещества мантии. Таким образом, значение океанической коры для функционирования нашей планеты в пригодном для существования жизни режиме также исключительно велико.
Источник
Строение океанической коры и ее типы, переходные зоны
В строении земной коры под глубоководной частью океана и на материках имеются существенные различия. Толщина земной коры на материках составляют около 30-40 км, под горными хребтами она увеличивается до 80 км. Под глубоководной частью океана толщина земной коры 5-15 км. В среднем подошва земной коры залегает под материками на глубине 35 км. а под океанами на глубине 7 км, т.е. океаническая земная кора примерно в 5 раз тоньше материковой.
Помимо различия в толщине имеются существенные различия в строении земной коры материкового и океанического типов.
Материковая земная кора состоит из трех слоев: верхнего осадочного, образованного из продуктов разрушения кристаллических горных пород и распространяющегося в среднем до глубины 5 км; среднего гранитного (скорость сейсмических волн как в граните), состоящего из кристаллических и метаморфических пород и имеющих толщину 10-15 км; нижнего базальтового, толщиной около 15 км.
Океаническая земная кора состоит также из трех слоев: верхнего осадочного, распространяющегося до глубины 1 км; среднего с малоизвестным составом, залегающего на глубинах 1-2,5 км; нижнего базальтового, имеющего среднюю толщину около 5 км.
Граница между материковым и океаническим типами земной коры проходит в среднем по изобате 2000 м. На этой глубине происходит выклинивание и исчезновение гранитного слоя. Граница между материковым и океаническим типами земной коры не всегда четко выражена. Для отдельных районов характерен постепенный переход от земной коры океанического типа к материковому. Так, например, для дальневосточных морей к краю материковой платформы примыкает котловина окраинного моря, земная кора которой по своему строению близка к океанической, т.е. гранитный слой отсутствует, но осадочный слой настолько развит, что общая толщина земной коры в котловинах дальневосточных морей составляет 15-20 км (субокеанический тип).
Границей морей и океанов служат поднятия дна — островные дуги. Земная кора в районе островных дуг близка по строению и толщине к материковому типу и называется субматериковой.
Термин «переходная зона» употребляется в двояком смысле: во-первых, констатируется переходное положение некоторой зоны между материком и океаном (в этом смысле и материковый склон с подножием можно считать переходной зоной), во-вторых, подчеркивается генетический и исторический смысл этого понятия, той зоны, где происходит переход, превращение одного состояния земной коры в другое.
Комплексы морская котловина — островная дуга — глубоководный желоб образуют области переходной зоны. Сопоставление этих областей позволяет разделить их на несколько типов, составляющих определенный генетический ряд.
1. Витязевскии тип. К этому типу принадлежит область, включающая желоб Витязь. Для нее характерны: отсутствие четко выраженной островной дуги, относительно небольшая глубина желоба, слабая сейсмичность.
2. Марианский тип. Марианская переходная область. Четко выраженная (преимущественно в виде подводного хребта) островная дуга, очень большая глубина желоба, интенсивные сейсмичность и вулканизм, малая мощность осадочного слоя в желобе и в морской котловине, которая по существу ничем не отличается от смежных океанических котловин.
3. Курильский тип. По многим чертам переходная область сходна с предшествующим типом, но отличается значительно большей обособленностью морских котловин, субокеаническим типом земной коры под их дном, значительно большими размерами островов. Наблюдаются участки с субматериковой земной корой, островные дуги нередко двойные. Напряженность сейсмических и вулканических процессов достигает максимума. Глубины желобов весьма велики. Заметно возрастает мощность осадочного слоя в желобах и котловинах.
4. Японский тип. Разновозрастные островные дуги сливаются в единые крупные массивы островной или полуостровной суши. Появляются крупные по размерам участки типичной материковой земной коры. Интенсивность вулканизма сильно снижается, но напряженность сейсмических процессов еще очень велика. Днища морских котловин сложены субокеанической корой с мощным осадочным слоем.
К рассматриваемому типу примыкают еще две разновидности, которые можно назвать Индонезийской и Восточно-Тихоокеанской. Их объединяют весьма существенное участие материковых элементов в строении переходной области, меньшая (по сравнению с предыдущим типом) глубина желобов, нередко — спад вулканической активности.
5. Средиземноморский тип. Характеризуется дальнейшим нарастанием роли материковой коры. Субокеанические котловины остаются в виде «окон», со всех сторон окруженным материковой корой. Бывшие островные дуги по существу представляют собой молодые горные сооружения, образующие край континента или его полуострова. Глубоководные желоба или сохранились в виде реликтов (Эллинский желоб в Средиземном море), или отсутствуют.
Мощность субокеанической коры в котловинах очень велика, в рыхлом чехле возможны современные складчатые процессы или образование диоритовых структур (например, Южный Каспий, Балеарская котловина Средиземного моря). В переходных зонах можно встретить и типично океаническую кору (дно Филиппинского моря), и типично материковую (Японские острова). Переходные зоны характеризуются высокой сейсмичностью и большой контрастностью рельефа: вершины островных дуг поднимаются до 3-4 км, а глубина моря в желобах может достигать 11 км. Это свидетельствует об интенсивности тектонических движений земной коры в переходных зонах, характерных для геосинклинальных областей, поэтому этот тип земной коры называют еще геосинклинальным.
В пределах океанической земной коры выделяют еще один тип — рифтогенальный, характерный для зон срединно-океанических хребтов. Основная особенность строения океанической коры в зонах срединно-океанических хребтов заключается в том, что осадочный покров на дне осевых рифтовых долин практически отсутствует, причем по мере удаления от хребта толщина осадочного слоя возрастает. О своеобразии строения океанической земной коры рифтогенального типа свидетельствует и высокая сейсмичность, большие значения теплового потока, аномалии геофизических характеристик.
Таким образом, в пределах Мирового океана земная кора представлена материковым и океаническим типами, переходным (геосинклинальным) и рифтогенальным.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник



